Adsorption of Environmental Pollutants Using Nanocrystalline Zeolites

You are here

Project Period: 
2005
Project Investigator(s): 
S. Larsen, Department of Chemistry, University of Iowa
Abstract: 

Zeolites are crystalline, aluminosilicate molecular sieves with pores of molecular dimensions that are widely used as catalysts, adsorbents and ion exchangers. Nanocrystalline zeolites are synthetic zeolites with discrete, uniform crystals of less than 100 nm in size. Nanocrystalline zeolites have increased surface areas relative to commercial, micron-sized zeolites. In our laboratory, we have synthesized several different zeolites (ZSM-5, Y and silicalite) with crystal sizes of approximately 20 nm. These materials have enhanced adsorption capacities due to the increased surface areas relative to micron-sized zeolites. The nanocrystalline zeolite external surface can be functionalized to tailor its properties for adsorption of pollutants in different environments. The hypothesis of the proposed study is that nanocrystalline zeolites will be effective adsorbents for volatile organic compounds (formaldehyde, benzene and trichloroethylene) and inorganic oxyanions (chromate, arsenate, selenate). These environmental pollutants have been linked to many health problems due to their toxicity.   

Publications: 

Petushkov A, Intra J, Graham JB, Larsen SC, Salem AK. Effect of crystal size and surface functionalization on the cytotoxicity of silicalite-1 nanoparticles. Chem Res Toxicol. 2009 22(7):1359-68.